John A. Hyatt. Liquid and Supercritical Carbon Dioxide as Organic Solvents.

Page 5097. In a personal communication, G. Alexander (Monsanto Co., 800 N. Lindbergh Blvd., St. Louis, MO 63167) pointed out that, while valid solvent parameters such as  $E_{\tau}(30)$ can be determined for supercritical CO<sub>2</sub> under a given set of conditions, it would be incorrect to consider any one  $E_{\tau}(30)$  value as *uniquely* representing the supercritical fluid state of CO<sub>2</sub> as a whole. Alexander's caveat is supported by a recent paper in which Sigman, Lindley, and Leffler (J. Am. Chem. Soc. 1985, 107, 1471) report that the Kamlet-Taft  $\pi^*$  values for supercritical CO<sub>2</sub> vary with the density at which the measurements are made. The  $\pi^*$  and  $E_{\tau}(30)$  values in my work were determined under conditions approximating constant density, and the reader should therefore understand that values for these parameters may diverge considerably at other densities.

## Vol. 50, 1985

Srinivasan Nagarajan and Kenneth L. Rinehart, Jr.\*. A Sigmatropic Rearrangement Involving Dimethyl Sulfoxide during an Oxidation of a Carbohydrate Derivative.

Page 380. In the supplementary material one of the cell parameters for compound 6 was omitted. It is c = 11.221 (2) Å.

Kenji Hayakawa, Hitoshi Nishiyama, and Ken Kanematsu\*. Reagent Design and Study of Allene as a Promising Class of Reagents (Synthons) for Cycloaddition. The Site Selective and Regioselective Diels-Alder Reactions of (Phenylsulfonyl)propadiene and Alkylation of Adducts.

Page 513, right column, line 16. (Jef) should read (Jed). Page 515, Table II, entry 3. The product is drawn incorrectly; it should be



Gregory P. Mullen, Narender P. Luthra, R. Bruce Dunlap, and Jerome D. Odom\*. Synthesis and Multinuclear Magnetic Resonance Study of Para-Substituted Phenyl Selenobenzoates.

Page 816.

We gratefully acknowledge the financial support of the National Institutes of Health (ESO-2836).

**Mikiko Sodeoka and Masakatsu Shibasaki**<sup>\*</sup>. New Functions of (Arene)tricarbonylchromium(0) Complexes as Hydrogenation Catalysts: Stereospecific Semihydrogenation of Alkynes and Highly Chemoselective Hydrogenation of  $\alpha,\beta$ -Unsaturated Carbonyl Compounds.

Page 1148. Table I should read

| Table 1. Hydrogenation of Alkynes, $\alpha,\beta$ -Unsaturated Carbonyl Compounds and $\alpha,\beta$ -Unsaturated | i imines |
|-------------------------------------------------------------------------------------------------------------------|----------|
|-------------------------------------------------------------------------------------------------------------------|----------|

| snery | starting material                       | no. | catalyst <sup>a</sup>                | solvent | kg/cm <sup>2</sup> | temp, °C | time, h | product                                 | no. | yield, %          |
|-------|-----------------------------------------|-----|--------------------------------------|---------|--------------------|----------|---------|-----------------------------------------|-----|-------------------|
| 1     | Ph-≡-                                   | 1   | MBZ-Cr(CO) <sub>3</sub> <sup>b</sup> | acetone | 70                 | 120      | 23      | Ph                                      | 2   | 92°               |
| 2     | Ph- <u>-</u>                            | 1   | $NP \cdot Cr(CO)_3^d$                | THF     | 20                 | 45       | 24      | Ph                                      | 2   | $92^{c}$          |
| 3     | ~~~~                                    | 3   | $MBZ \cdot Cr(CO)_3$                 | acetone | 70                 | 120      | 15      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     | 100°              |
| 4     | ∽~ € ОН                                 | 4   | $MBZ \cdot Cr(CO)_3$                 | acetone | 70                 | 120      | 8       | ∽∽∽он                                   |     | 95°               |
| 5     | ·∕~≝^OH                                 | 4   | $NP \cdot Cr(CO)_3$                  | THF     | 50                 | 45       | 8       | И Сн                                    |     | 87°               |
| 6     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5   | $NP \cdot Cr(CO)_3$                  | THF     | 30                 | 45       | 3       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | 6   | 94 <sup>e</sup>   |
| 7     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5   | $MBZ \cdot Cr(CO)_3$                 | acetone | 70                 | 120      | 12      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6   | 97 <sup>e</sup>   |
| 8     | ◯=0                                     | 7   | MBZ·Cr(CO) <sub>3</sub>              | acetone | 70                 | 120      | 20      | no reaction                             |     |                   |
| 9     | °                                       | 10  | NP·Cr(CO) <sub>3</sub>               | THF     | 70                 | 45       | 26      | ° X - Y                                 | 11  | 96 <sup>e</sup>   |
| 10    | CODEt                                   | 12  | NP-Cr(CO) <sub>3</sub>               | THF     | 95                 | 45       | 30      | CODEt                                   | 13  | 99 <sup>c,f</sup> |
| 11    |                                         | 14  | $NP \cdot Cr(CO)_3$                  | THF     | 80                 | 120      | 12      | OH O<br>OEt                             | 15  | 11 <sup>c.g</sup> |
| 12    |                                         | 16  | MBZ-Cr(CO) <sub>3</sub>              | acetone | 70                 | 120      | 24      |                                         | 17  | <del>9</del> 3°   |
| 13    |                                         | 18  | NP-Cr(CO) <sub>3</sub>               | THF     | 70                 | 60       | 19      |                                         | 19  | 90 <sup>c</sup>   |

<sup>a</sup> In all the experiments, 0.2 molar equiv of the catalyst to the substrate was used. <sup>b</sup> (Methyl benzoate)tricarbonylchromium. This commercially available catalyst requires high temperature and high  $H_2$  pressure for the hydrogenation in general. <sup>c</sup> Determined by gas chromatographic analysis relative to an internal hydrocarbon standard. <sup>d</sup> Naphthalenetricarbonylchromium. The hydrogenation can proceed under the milder conditions (45 °C) in the case of this catalyst (not commercially available). The required hydrogen pressure depends on substrates. <sup>e</sup> Isolated yield. <sup>f</sup> The starting material (ca. 0.5%) was recovered. <sup>e</sup> The starting material (69%) was recovered.